Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(7): 5421-5436, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38546708

RESUMEN

A series of novel 5-aminothiazole-based ligands for prolyl oligopeptidase (PREP) comprise selective, potent modulators of the protein-protein interaction (PPI)-mediated functions of PREP, although they are only weak inhibitors of the proteolytic activity of PREP. The disconnected structure-activity relationships are significantly more pronounced for the 5-aminothiazole-based ligands than for the earlier published 5-aminooxazole-based ligands. Furthermore, the stability of the 5-aminothiazole scaffold allowed exploration of wider substitution patterns than that was possible with the 5-aminooxazole scaffold. The intriguing structure-activity relationships for the modulation of the proteolytic activity and PPI-derived functions of PREP were elaborated by presenting a new binding site for PPI modulating PREP ligands, which was initially discovered using molecular modeling and later confirmed through point mutation studies. Our results suggest that this new binding site on PREP is clearly more important than the active site of PREP for the modulation of its PPI-mediated functions.


Asunto(s)
Prolil Oligopeptidasas , Serina Endopeptidasas , Tiazoles , Prolil Oligopeptidasas/metabolismo , Serina Endopeptidasas/metabolismo , Ligandos , Sitios de Unión
2.
Int J Biol Macromol ; 259(Pt 2): 129313, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38216012

RESUMEN

Prolyl endopeptidases (PEP) from Sphingomonas capsulata (sc) and Myxococcus xanthus (mx) selectively degrade gluten peptides in vitro, offering a potential therapeutic strategy for celiac disease. However, the mechanisms governing the interaction of these enzymes with their substrates remain unclear. In this study, conventional molecular dynamics simulations with a microsecond timescale and targeted molecular dynamics simulations were performed to investigate the native states of mxPEP and scPEP enzymes, as well as their allosteric binding with a representative substrate, namely, Z-Ala-Pro-p-nitroanilide (pNA). The simulations reveal that the native scPEP is in an open state, while the native mxPEP is in a closed state. When pNA approaches a closed mxPEP, it binds to an allosteric pocket located at the first and second ß-sheet of the ß-propeller domain, inducing the opening of this enzyme. Neither enzyme is active in the open or partly-open states. Enzymatic activity is enabled only when the catalytic pocket in the closed state fully accommodates the substrates. The internal capacity of the catalytic pocket of PEP in the closed state determines the maximum size of the gluten peptides that the enzymes can catalyze. The present work provides essential molecular dynamics information for the redesign or engineering of PEP enzymes.


Asunto(s)
Enfermedad Celíaca , Prolil Oligopeptidasas , Humanos , Prolil Oligopeptidasas/metabolismo , Serina Endopeptidasas/química , Simulación de Dinámica Molecular , Glútenes/química , Péptidos/química
3.
Future Med Chem ; 16(1): 43-58, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38054466

RESUMEN

Background: This research aims to discover novel derivatives having potential therapeutic applications in treating conditions related to prolyl oligopeptidase (POP) dysfunction. Method: Novel benzimidazole derivatives have been synthesized, characterized and screened for their in vitro POP inhibition. Results: All these derivatives showed excellent-to-good inhibitory activities in the range of IC50 values of 3.61 ± 0.15 to 43.72 ± 1.18 µM, when compared with standard Z-prolyl-prolinal. The docking analysis revealed the strong interactions between our compounds and the target enzyme, providing critical insights into their binding affinities and potential implications for drug development. Conclusion: The significance of these compounds in targeting POP enzyme offers promising prospects for future research in the field of neuropharmacology.


Asunto(s)
Prolil Oligopeptidasas , Serina Endopeptidasas , Prolil Oligopeptidasas/metabolismo , Serina Endopeptidasas/metabolismo , Bencimidazoles/farmacología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
4.
Food Chem ; 429: 136972, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37506662

RESUMEN

Prolyl endopeptidase can partially degrade soybean protein B3 subunit and alleviate soy sauce secondary precipitate. In this study, the influences of ultrasound-assisted prolyl endopeptidase on the degradation of soybean protein B3 subunit of soy sauce and primary mechanism were investigated using SDS-PAGE, MALDI-TOF-MS, circular dichromatic spectrometer, fluorescence spectra, etc. Results showed that ultrasound-assisted prolyl endopeptidase enhanced 72% degradation rate of B3 subunit and reduced soy sauce secondary precipitate remarkably, meanwhile significantly increased content of organic taste compounds of soy sauce compared with control (p < 0.05). Sonication markedly reduced percentage of α-helix and increased percentage of random coil, made hydrophobic amino acids inside prolyl endopeptidase exposed to its surface and enhanced its flexibility, which facilitated the binding of prolyl endopeptidase active center with B3 subunit and finally enhanced the latter's degradation rate and appearance quality of soy sauce. This work laid a foundation for solving soy sauce secondary precipitate.


Asunto(s)
Alimentos de Soja , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Prolil Oligopeptidasas/metabolismo , Peso Molecular , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Fermentación , Estructura Secundaria de Proteína , Sonicación
5.
Microb Cell Fact ; 22(1): 93, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37143012

RESUMEN

BACKGROUND: Prolyl endopeptidase from Aspergillus niger (AN-PEP) is a prominent serine proteinase with various potential applications in the food and pharmaceutical industries. However, the availability of efficient and low-cost AN-PEP remains a challenge owing to its low yield and high fermentation cost. RESULTS: Here, AN-PEP was recombinantly expressed in Trichoderma reesei (rAN-PEP) under the control of the cbh1 promoter and its secretion signal. After 4 days of shaking flask cultivation with the model cellulose Avicel PH101 as the sole carbon source, the extracellular prolyl endopeptidase activity reached up to 16.148 U/mL, which is the highest titer reported to date and the secretion of the enzyme is faster in T. reesei than in other eukaryotic expression systems including A. niger and Komagataella phaffii. Most importantly, when cultivated on the low-cost agricultural residue corn cob, the recombinant strain was found to secret a remarkable amount of rAN-PEP (37.125 U/mL) that is twice the activity under the pure cellulose condition. Furthermore, treatment with rAN-PEP during beer brewing lowered the content of gluten below the ELISA kit detection limit (< 10 mg/kg) and thereby, reduced turbidity, which would be beneficial for improving the non-biological stability of beer. CONCLUSION: Our research provides a promising approach for industrial production of AN-PEP and other enzymes (proteins) from renewable lignocellulosic biomass, which provides a new idea with relevant researchers for the utilization of agricultural residues.


Asunto(s)
Prolil Oligopeptidasas , Trichoderma , Prolil Oligopeptidasas/metabolismo , Aspergillus niger/metabolismo , Cerveza , Celulosa/metabolismo , Fermentación , Trichoderma/metabolismo
6.
Biomolecules ; 13(4)2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37189369

RESUMEN

High levels of free D-aspartate (D-Asp) are present in vertebrate testis during post-natal development, coinciding with the onset of testosterone production, which suggests that this atypical amino acid might participate in the regulation of hormone biosynthesis. To elucidate the unknown role of D-Asp on testicular function, we investigated steroidogenesis and spermatogenesis in a one-month-old knockin mouse model with the constitutive depletion of D-Asp levels due to the targeted overexpression of D-aspartate oxidase (DDO), which catalyzes the deaminative oxidation of D-Asp to generate the corresponding α-keto acid, oxaloacetate, hydrogen peroxide, and ammonium ions. In the Ddo knockin mice, we found a dramatic reduction in testicular D-Asp levels, accompanied by a significant decrease in the serum testosterone levels and testicular 17ß-HSD, the enzyme involved in testosterone biosynthesis. Additionally, in the testes of these Ddo knockin mice, the expression of PCNA and SYCP3 proteins decreased, suggesting alterations in spermatogenesis-related processes, as well as an increase in the cytosolic cytochrome c protein levels and TUNEL-positive cell number, which indicate an increase in apoptosis. To further investigate the histological and morphometric testicular alterations in Ddo knockin mice, we analyzed the expression and localization of prolyl endopeptidase (PREP) and disheveled-associated activator of morphogenesis 1 (DAAM1), two proteins involved in cytoskeletal organization. Our results showed that the testicular levels of DAAM1 and PREP in Ddo knockin mice were different from those in wild-type animals, suggesting that the deficiency of D-Asp is associated with overall cytoskeletal disorganization. Our findings confirmed that physiological D-Asp influences testosterone biosynthesis and plays a crucial role in germ cell proliferation and differentiation, which are required for successful reproduction.


Asunto(s)
Ácido Aspártico , Ácido D-Aspártico , Masculino , Ratones , Animales , Ácido Aspártico/metabolismo , Ácido D-Aspártico/metabolismo , Espermatogénesis , Testículo/metabolismo , Testosterona , Prolil Oligopeptidasas/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Unión al GTP rho/metabolismo
7.
Mol Pharmacol ; 104(1): 1-16, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37147110

RESUMEN

Current treatments for Alzheimer's disease (AD) help reduce symptoms for a limited time but do not treat the underlying pathology. To identify potential therapeutic targets for AD, an integrative network analysis was previously carried out using 364 human postmortem control, mild cognitive impairment, and AD brains. This analysis identified proline endopeptidase-like protein (PREPL), an understudied protein, as a downregulated protein in late-onset AD patients. In this study we investigate the role of PREPL. Analyses of data from human postmortem samples and PREPL knockdown (KD) cells suggest that PREPL expression modulates pathways associated with protein trafficking, synaptic activities, and lipid metabolism. Furthermore, PREPL KD impairs cell proliferation and modulates the structure of vesicles, levels of neuropeptide-processing enzymes, and secretion of neuropeptides. In addition, decrease in PREPL levels leads to changes in the levels of a number of synaptic proteins as well as changes in the levels of secreted amyloid beta (Aß) 42 peptide and Tau phosphorylation. Finally, we report that local decrease in PREPL levels in mouse hippocampus attenuates long-term potentiation, suggesting a role in synaptic plasticity. Together, our results indicate that PREPL affects neuronal function by modulating protein trafficking and synaptic function, an important mechanism of AD pathogenesis. SIGNIFICANCE STATEMENT: Integrative network analysis reveals proline endopeptidase-like protein (PREPL) to be downregulated in human sporadic late-onset Alzheimer's disease brains. Down regulation of PREPL leads to increases in amyloid beta secretion, Tau phosphorylation, and decreases in protein trafficking and long-term potentiation.


Asunto(s)
Enfermedad de Alzheimer , Prolil Oligopeptidasas , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Multiómica , Prolil Oligopeptidasas/metabolismo , Transporte de Proteínas
8.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37046989

RESUMEN

Cognitive impairment represents one of the core features of schizophrenia. Prolyl Oligopeptidase (POP) inhibition is an emerging strategy for compensating cognitive deficits in hypoglutamatergic states such as schizophrenia, although little is known about how POP inhibitors exert their pharmacological activity. The mitochondrial and nuclear protein Prohibitin 2 (PHB2) could be dysregulated in schizophrenia. However, altered PHB2 levels in schizophrenia linked to N-methyl-D-aspartate receptor (NMDAR) activity and cognitive deficits are still unknown. To shed light on this, we measured the PHB2 levels by immunoblot in a postmortem dorsolateral prefrontal cortex (DLPFC) of schizophrenia subjects, in the frontal pole of mice treated with the NMDAR antagonists phencyclidine and dizocilpine, and in rat cortical astrocytes and neurons treated with dizocilpine. Mice and cells were treated in combination with the POP inhibitor IPR19. The PHB2 levels were also analyzed by immunocytochemistry in rat neurons. The PHB2 levels increased in DLPFC in cases of chronic schizophrenia and were associated with cognitive impairments. NMDAR antagonists increased PHB2 levels in the frontal pole of mice and in rat astrocytes and neurons. High levels of PHB2 were found in the nucleus and cytoplasm of neurons upon NMDAR inhibition. IPR19 restored PHB2 levels in the acute NMDAR inhibition. These results show that IPR19 restores the upregulation of PHB2 in an acute NMDAR hypoactivity stage suggesting that the modulation of PHB2 could compensate NMDAR-dependent cognitive impairments in schizophrenia.


Asunto(s)
Disfunción Cognitiva , Trastornos Psicóticos , Esquizofrenia , Animales , Ratas , Cognición , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Maleato de Dizocilpina/farmacología , Prohibitinas , Prolil Oligopeptidasas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo
9.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362069

RESUMEN

Fibrosis is a pathological process in which parenchymal cells are necrotic and excess extracellular matrix (ECM) is accumulated due to dysregulation of tissue injury repair. Thymosin ß4 (Tß4) is a 43 amino acid multifunctional polypeptide that is involved in wound healing. Prolyl oligopeptidase (POP) is the main enzyme that hydrolyzes Tß4 to produce its derivative N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) which is found to play a role in the regulation of fibrosis. Accumulating evidence suggests that the Tß4-POP-Ac-SDKP axis widely exists in various tissues and organs including the liver, kidney, heart, and lung, and participates in the process of fibrogenesis. Herein, we aim to elucidate the role of Tß4-POP-Ac-SDKP axis in hepatic fibrosis, renal fibrosis, cardiac fibrosis, and pulmonary fibrosis, as well as the underlying mechanisms. Based on this, we attempted to provide novel therapeutic strategies for the regulation of tissue damage repair and anti-fibrosis therapy. The Tß4-POP-Ac-SDKP axis exerts protective effects against organ fibrosis. It is promising that appropriate dosing regimens that rely on this axis could serve as a new therapeutic strategy for alleviating organ fibrosis in the early and late stages.


Asunto(s)
Fibrosis , Oligopéptidos , Prolil Oligopeptidasas , Humanos , Fibrosis/etiología , Fibrosis/metabolismo , Oligopéptidos/metabolismo , Prolil Oligopeptidasas/metabolismo , Timosina/metabolismo
10.
Biochem Biophys Res Commun ; 591: 76-81, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34999257

RESUMEN

Proteases are enzymes that are not only essential for life but also industrially important. Understanding the substrate recognition mechanisms of proteases is important to enhance the use of proteases. The fungus Aspergillus produces a wide variety of proteases, including PEP, which is a prolyl endoprotease from A. niger. Although PEP exhibits amino acid sequence similarity to the serine peptidase family S28 proteins (PRCP and DPP7) that recognize Pro-X bonds in the terminal regions of peptides, PEP recognizes Pro-X bonds not only in peptides but also in proteins. To reveal the structural basis of the prolyl endoprotease activity of PEP, we determined the structure of PEP by X-ray crystallography at a resolution of 1.75 Å. The PEP structure shows that PEP has a wide-open catalytic pocket compared to its homologs. The characteristic catalytic pocket structure of PEP is predicted to be important for the recognition of protein substrates.


Asunto(s)
Aspergillus niger/enzimología , Cristalografía por Rayos X , Prolil Oligopeptidasas/química , Prolil Oligopeptidasas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Modelos Moleculares , Homología Estructural de Proteína , Especificidad por Sustrato
11.
Molecules ; 26(17)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34500673

RESUMEN

Alzheimer's disease (AD) is a progressive age-related neurodegenerative disease recognized as the most common form of dementia among elderly people. Due to the fact that the exact pathogenesis of AD still remains to be fully elucidated, the treatment is only symptomatic and available drugs are not able to modify AD progression. Considering the increase in life expectancy worldwide, AD rates are predicted to increase enormously, and thus the search for new AD drugs is urgently needed. Due to their complex nitrogen-containing structures, alkaloids are considered to be promising candidates for use in the treatment of AD. Since the introduction of galanthamine as an antidementia drug in 2001, Amaryllidaceae alkaloids (AAs) and further isoquinoline alkaloids (IAs) have been one of the most studied groups of alkaloids. In the last few years, several compounds of new structure types have been isolated and evaluated for their biological activity connected with AD. The present review aims to comprehensively summarize recent progress on AAs and IAs since 2010 up to June 2021 as potential drugs for the treatment of AD.


Asunto(s)
Alcaloides de Amaryllidaceae/metabolismo , Amaryllidaceae/química , Enfermedad de Alzheimer/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Prolil Oligopeptidasas/metabolismo
12.
Biochem Biophys Res Commun ; 572: 65-71, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34358965

RESUMEN

Previously, we reported that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a binding partner of prolyl oligopeptidase (POP) in neuroblastoma NB-1 cells and that the POP inhibitor, SUAM-14746, inhibits cytosine arabinoside (Ara-C)-induced nuclear translocation of GAPDH and protects against Ara-C cytotoxicity. To carry out a more in-depth analysis of the interaction between POP and GAPDH, we generated POP-KO NB-1 cells and compared the nuclear translocation of GAPDH after Ara-C with or without SUAM-14746 treatment to wild-type NB-1 cells by western blotting and fluorescence immunostaining. Ara-C did not induce the nuclear translocation of GAPDH and SUAM-14746 did not protect against Ara-C cytotoxicity in POP-KO cells. These results indicate that the anticancer effects of Ara-C not only include the commonly known antimetabolic effects, but also the induction of cell death by nuclear transfer of GAPDH through interaction with POP.


Asunto(s)
Núcleo Celular/efectos de los fármacos , Citarabina/farmacología , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Prolil Oligopeptidasas/metabolismo , Muerte Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Citarabina/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Humanos , Prolina/análogos & derivados , Prolina/farmacología , Prolil Oligopeptidasas/antagonistas & inhibidores , Prolil Oligopeptidasas/deficiencia , Tiazolidinas/farmacología , Células Tumorales Cultivadas
13.
Eur J Med Chem ; 224: 113717, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34371463

RESUMEN

Peptidomimetic inhibitors of fibroblast activation protein (FAP) are regarded as promising tools for tumor targeting in vivo. Even though several peptidomimetic compounds with nanomolar potency have been described, broad chemical space for further modification remained unexplored. Therefore, we set to analyze the structure-activity relationship (SAR) of pseudopeptide compound series with α-ketoamide warheads in order to explore the contributions of the P1' and P2' moieties to the inhibitory potency. A series of novel inhibitors bearing varied P1' and/or P2' moieties was synthesized by combining a Passerini reaction-Amine Deprotection-Acyl Migration (PADAM) approach with peptide coupling and subsequent oxidation. The resulting compounds inhibited FAP and the related prolyl endopeptidase (PREP) with potencies in the nanomolar to sub-nanomolar range. The most potent FAP inhibitor IOCB22-AP446 (6d, IC50 = 89 pM) had about 36-fold higher inhibition potency than the most potent inhibitor published to date. The compounds were selective over FAP's closest homolog DPP-IV, were stable in human and mouse plasma and in mouse microsomes, and displayed minimal cytotoxicity in tissue cultures.


Asunto(s)
Fibroblastos/metabolismo , Prolil Oligopeptidasas/metabolismo , Animales , Humanos , Ratones , Estructura Molecular , Relación Estructura-Actividad
14.
Genes (Basel) ; 12(7)2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34208970

RESUMEN

Cadmium (Cd) is one of the most toxic pollutants for health due to its accumulation in several tissues, including testis. This report confirms that Cd increased oxidative stress and apoptosis of germ and somatic cells and provoked testicular injury, as documented by biomolecular and histological alterations, i.e., CAT and SOD activity, the protein level of steroidogenic enzymes (StAR and 3ß-HSD), and morphometric parameters. Additionally, it further documents the melatonin (MLT) coadministration produces affects in mitigating Cd-induced toxicity on adult rat testis, as demonstrated by the reduction of oxidative stress and apoptosis, with reversal of the observed histological changes; moreover, a role of MLT in partially restoring steroidogenic enzymes expression was evidenced. Importantly, the cytoarchitecture of testicular cells was perturbed by Cd exposure, as highlighted by impairment of the expression and localization of two cytoskeleton-associated proteins DAAM1 and PREP, which are involved in the germ cells' differentiation into spermatozoa, altering the normal spermatogenesis. Here, for the first time, we found that the co-treatment with MLT attenuated the Cd-induced toxicity on the testicular DAAM1 and PREP expression. The combined findings provide additional clues about a protective effect of MLT against Cd-induced testicular toxicity by acting on DAAM1 and PREP expression, encouraging further studies to prove its effectiveness in human health.


Asunto(s)
Cadmio/toxicidad , Proteínas del Citoesqueleto/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Melatonina/farmacología , Estrés Oxidativo/efectos de los fármacos , Prolil Oligopeptidasas/metabolismo , Testículo/efectos de los fármacos , Animales , Antioxidantes/farmacología , Apoptosis , Proteínas del Citoesqueleto/genética , Masculino , Prolil Oligopeptidasas/genética , Ratas , Ratas Wistar , Espermatogénesis , Testículo/metabolismo , Testículo/patología
15.
Sci Rep ; 11(1): 11553, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078944

RESUMEN

Salt-bridges play a key role in the thermostability of proteins adapted in stress environments whose intrinsic basis remains to be understood. We find that the higher hydrophilicity of PfP than that of HuP is due to the charged but not the polar residues. The primary role of these residues is to enhance the salt-bridges and their ME. Unlike HuP, PfP has made many changes in its intrinsic property to strengthen the salt-bridge. First, the desolvation energy is reduced by directing the salt-bridge towards the surface. Second, it has made bridge-energy more favorable by recruiting energetically advantageous partners with high helix-propensity among the six possible salt-bridge pairs. Third, ME-residues that perform intricate interactions have increased their energy contribution by making major changes in their binary properties. The use of salt-bridge partners as ME-residues, and ME-residues' overlapping usage, predominant in helices, and energetically favorable substitution are some of the favorable features of PfP compared to HuP. These changes in PfP reduce the unfavorable, increase the favorable ME-energy. Thus, the per salt-bridge stability of PfP is greater than that of HuP. Further, unfavorable target ME-residues can be identified whose mutation can increase the stability of salt-bridge. The study applies to other similar systems.


Asunto(s)
Calor , Prolil Oligopeptidasas/metabolismo , Pyrococcus furiosus/enzimología , Estabilidad de Enzimas , Interacciones Hidrofóbicas e Hidrofílicas , Prolil Oligopeptidasas/química , Electricidad Estática , Termodinámica
16.
Food Chem ; 355: 129597, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33878557

RESUMEN

Recent research suggests that gluten-free beers by prolyl-endopeptidase treatment may not be safe for coeliac disease (CD) patients. Therefore, the gluten peptidome of an industrial gluten-free prolyl-endopeptidase treated malt beer (<10 ppm gluten) was compared to its untreated counterpart (58 ppm gluten) as a reference. NanoLC-HRMS analysis revealed the presence of 155 and 158 gluten peptides in the treated and reference beer, respectively. Characterisation of the peptides in treated beer showed that prolyl-endopeptidase activity was not complete with many peptides containing (multiple) internal proline-residues. Yet, prolyl-endopeptidase treatment did eliminate complete CD-immunogenic motifs, however, 18 peptides still contained partial, and potentially unsafe, motifs. In the reference beer respectively 7 and 37 gluten peptides carried (multiple) complete and/or partial CD-immunogenic motifs. Worrying is that many of these partial immunogenic gluten peptides do not contain a recognition epitope for the R5-antibody and would be overlooked in the current ELISA analysis for gluten quantification.


Asunto(s)
Cerveza/análisis , Glútenes/análisis , Hordeum/metabolismo , Proteómica/métodos , Secuencia de Aminoácidos , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/patología , Cromatografía Líquida de Alta Presión , Glútenes/inmunología , Glútenes/metabolismo , Hordeum/inmunología , Humanos , Espectrometría de Masas , Nanotecnología , Péptidos/análisis , Péptidos/inmunología , Prolil Oligopeptidasas/metabolismo
17.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33579026

RESUMEN

Prolyl oligopeptidase (PREP) is a serine protease that binds to alpha-synuclein (aSyn) and induces its aggregation. PREP inhibitors have been shown to have beneficial effects in Parkinson's disease models by enhancing the clearance of aSyn aggregates and modulating striatal dopamine. Additionally, we have shown that PREP regulates phosphorylation and internalization of dopamine transporter (DAT) in mice. In this study, we clarified the mechanism behind this by using HEK-293 and PREP knock-out HEK-293 cells with DAT transfection. We tested the effects of PREP, PREP inhibition, and alpha-synuclein on PREP-related DAT regulation by using Western blot analysis and a dopamine uptake assay, and characterized the impact of PREP on protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) by using PKC assay and Western blot, respectively, as these kinases regulate DAT phosphorylation. Our results confirmed our previous findings that a lack of PREP can increase phosphorylation and internalization of DAT and decrease uptake of dopamine. PREP inhibition had a variable impact on phosphorylation of ERK dependent on the metabolic state of cells, but did not have an effect on phosphorylation or function of DAT. PREP modifications did not affect PKC activity either. Additionally, a lack of PREP elevated a DAT oligomerization that is associated with intracellular trafficking of DAT. Our results suggest that PREP-mediated phosphorylation, oligomerization, and internalization of DAT is not dependent on PKC or ERK.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Prolil Oligopeptidasas/metabolismo , Proteína Quinasa C/metabolismo , Células HEK293 , Humanos , Fosforilación , Multimerización de Proteína
18.
JCI Insight ; 6(6)2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33571164

RESUMEN

Altered inflammation and tissue remodeling are cardinal features of cardiovascular disease and cardiac transplant rejection. Neutrophils have increasingly been understood to play a critical role in acute rejection and early allograft failure; however, discrete mechanisms that drive this damage remain poorly understood. Herein, we demonstrate that early acute cardiac rejection increases allograft prolyl endopeptidase (PE) in association with de novo production of the neutrophil proinflammatory matrikine proline-glycine-proline (PGP). In a heterotopic murine heart transplant model, PGP production and PE activity were associated with early neutrophil allograft invasion and allograft failure. Pharmacologic inhibition of PE with Z-Pro-prolinal reduced PGP, attenuated early neutrophil graft invasion, and reduced proinflammatory cytokine expression. Importantly, these changes helped preserve allograft rejection-free survival and function. Notably, within 2 independent patient cohorts, both PGP and PE activity were increased among patients with biopsy-proven rejection. The observed induction of PE and matrikine generation provide a link between neutrophilic inflammation and cardiovascular injury, represent a potential target to reduce allogenic immune responses, and uncover a mechanism of cardiovascular disease that has been previously unrecognized to our knowledge.


Asunto(s)
Rechazo de Injerto/inmunología , Trasplante de Corazón , Neutrófilos/inmunología , Prolil Oligopeptidasas/metabolismo , Adulto , Anciano , Animales , Vías Clínicas , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad
19.
Proteins ; 89(6): 614-622, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33426726

RESUMEN

Puromycin-hydrolizing peptidases have been described as members of the prolyl oligopeptidase peptidase family. These enzymes are present across all domains of life but still little is known of the homologs found in the pathogenic bacterium Mycobacterium tuberculosis. The crystal structure of a M. tuberculosis puromycin hydrolase peptidase has been determined at 3 Angstrom resolution, revealing a conserved prolyl oligopeptidase fold, defined by α/ß-hydrolase and ß-propeller domains with two distinctive loops that occlude access of large substrates to the active site. The enzyme displayed amino peptidase activity with a substrate specificity preference for hydrophobic residues in the decreasing order of phenylalanine, leucine, alanine and proline. The enzyme's active site is lined by residues Glu564 for the coordination of the substrates amino terminal moiety and His561, Val608, Tyr78, Trp306, Phe563 and Ty567 for the accommodation of hydrophobic substrates. The availability of a crystal structure for puromycin hydrolase of M. tuberculosis shall facilitate the development of inhibitors with therapeutic applications.


Asunto(s)
Aminopeptidasas/química , Proteínas Bacterianas/química , Hidrolasas/química , Mycobacterium tuberculosis/enzimología , Prolil Oligopeptidasas/química , Puromicina/química , Alanina/química , Alanina/metabolismo , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Leucina/química , Leucina/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/química , Fenilalanina/química , Fenilalanina/metabolismo , Prolina/química , Prolina/metabolismo , Prolil Oligopeptidasas/genética , Prolil Oligopeptidasas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Puromicina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
20.
Life Sci ; 270: 119131, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33516698

RESUMEN

AIMS: Prolyl endopeptidase (PREP) is a serine endopeptidase widely distributed in the body, and accumulated evidence suggests that PREP participates in inflammation and oxidative stress. Here, we explored the effect of PREP gene disruption on hepatic inflammation and oxidative stress status in a methionine-choline-deficient (MCD)-induced nonalcoholic steatohepatitis (NASH) model. MAIN METHODS: PREP gene disruption (PREPgt) mice and wild-type (WT) littermates were placed on a control or an MCD diet for 4 weeks, respectively. The liver histopathological analysis and the number of inflammatory cells were determined by hematoxylin-eosin (HE) and immunohistochemical staining. Inflammation-associated genes and cytokine levels in liver tissue were evaluated by quantitative PCR and ELISA. The levels of P53, Sesn2, Nrf2, HO-1, and oxidative stress indicators in mice and the palmitic acid (PA)-treated human hepatocellular carcinoma cells (HepG2) were examined by immunoblotting and commercially available kits, respectively. KEY FINDINGS: We found that PREP expression was upregulated in the MCD-induced NASH model. In addition, PREP disruption alleviated MCD-induced hepatic inflammation accompanied by diminished infiltration of inflammatory cells and secretion of inflammatory mediators. More importantly, the results of this study indicate that targeting PREP can improve oxidative stress status in the liver of MCD-diet mice and PA-exposed HepG2 cells. The effect is most likely mediated by the activation of P53 and its downstream signaling pathways (Sesn2/Nrf2/HO-1). SIGNIFICANCE: Our results showed that PREP disruption (or inhibition) could decrease oxidative stress and inflammation and improve liver function, indicating that targeting PREP might be a new potential therapeutic option for NAFLD/NASH.


Asunto(s)
Hígado Graso/metabolismo , Prolil Oligopeptidasas/metabolismo , Prolil Oligopeptidasas/fisiología , Animales , Colina/metabolismo , Deficiencia de Colina/complicaciones , Citocinas/metabolismo , Dieta , Hígado Graso/tratamiento farmacológico , Células Hep G2 , Humanos , Inflamación/metabolismo , Hígado/metabolismo , Masculino , Metionina/deficiencia , Metionina/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Prolil Oligopeptidasas/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...